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Abstract. The velocity data obtained from Molecular Tagging Velo- 
cimetry (MTV) are typically located on an irregularly spaced meas- 
urement grid. To take advantage of many standard data processing 
techniques, the MTV data need to be remapped onto a grid with a 
uniform spacing. In this work, accuracy and noise issues related to 
the use of a least-squares-fit to various low order polynomials for the 
remapping of these data onto a uniformly spaced grid and the subse- 
quent computation of vorticity from these data are examined. This 
information has relevance to PIV data processing as well. As noted 
by Spedding and Rignot (1993), the best estimate of the velocity 
vector acquired through the use of tracer techniques such as PIV, is at 
the midpoint of the displacement vector. Thus, unless special care is 
taken, PIV data are also initially obtained on an irregular grid. 

As in the results of Fouras and Soria (1998), the error in the re- 
mapped velocity and the calculated vorticity field is divided into a 
mean bias error and a random error. In the majority of cases, the 
mean bias error is a more significant source of error than the more 
often quoted random error. Results of the simulation show that the 
best choice for remapping is the use of a least-squares fit to a 2"^ 
order polynomial and the best choice for vorticity calculation is to 
use a 4* order accurate, central, finite difference applied to uniformly 
sampled data. The actual value of the error depends upon the data 
density and the radius used for the selection of velocity measure- 
ments to be included in the remapping process. Increasing the data 
density and reducing the fit radius improve the accuracy. 

1 Introduction 

In recent years, many researchers have made use of full-field, 
two-component optical velocity measurement techniques, such as 
Particle Image Velocimetry (PIV), to derive flow quantities such as 
the out-of-plane vorticity from velocity data. The velocity field ac- 
quired from PIV is normally thought to be gathered on a uniformly 
spaced grid which allows for a variety of standard post-processing 
methods to be utilized. The development of Molecular Tagging Ve- 
locimetry (MTV) has placed an additional complication on the cal- 
culation of flow variables in that the data are not normally collected 
on a uniformly spaced grid. This paper deals with the questions re- 
lated to remapping MTV data onto a regularly spaced grid and the 
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methods used to compute the out-of-plane vorticity component fi-om 
these remapped data sets. 

Molecular Tagging Velocimetry is a full-field optical diagnostic 
which allows for the non-intrusive measurement of a fluid velocity 
field. This technique takes advantage of molecules which have long- 
lived excited states when tagged by a photon source. This technique 
can be thought of as the molecular equivalent of Particle Image Velo- 
cimetry. Rather than tracking particles placed in the flowing me- 
dium, the luminescence of regions of the flow containing the tracer 
molecules is tracked. A more complete description of the imple- 
mentation of the molecular tagging technique, its applications, and 
the parameters necessary for an optimal experiment can be found in 
Gendrich and Koochesfahani (1996) and Gendrich et al. (1997), and 
Koochesfahani (1999). The accuracy of velocity measurements made 
using Molecular Tagging Velocimetry is comparable to the digital 
version of PIV (DPIV). 

In the implementation of MTV, a series of laser-lines is used to 
generate a two-dimensional spatial distribution in the intensity field 
within the flowing medium. Velocity vectors are calculated at the 
intersection of these laser-lines. Generally, the measurement loca- 
tions are not uniformly spaced. Thus, it is necessary to place the 
velocity data onto a regular grid before flow variables, such as vor- 
ticity, can be computed via standard finite difference techniques. It 
should be noted that even though it is possible to generate a series of 
regularly spaced laser-lines in the flow, it is still necessary to remap 
the data. Both an unpublished study conducted at Michigan State 
University and Spedding and Rignot (1993) have reported that the 
best estimate of the location of the velocity vector determined by a 
measurement technique which tracks a tracer in a flow is located at 
the midpoint of the displacement vector. Thus, unless special care is 
taken in the selection of the measurement windows, data collected 
from PIV measurements is also not on an uniformly spaced grid. 

Few studies have examined the effect of remapping randomly 
spaced velocity data onto a regular grid. Agui and Jimenez (1987) 
reported that low order polynomial fits and "kriging" techniques 
produced the most accurate representation of the actual velocity field. 
However, the advantage was small with respect to other methods and 
no quantitative information on the performance of the polynomial 
and kriging methods was given. Spedding and Rignot (1993) com- 
pared an inverse distance approach with the use of a "global basis 
function" and found that the global basis function produced generally 
more accurate results; however, the results were highly dependent 
upon the measurement density. 

Several authors have examined the accuracy of various means to 
compute vorticity from velocity data already on a regular grid. Sped- 
ding and Rignot (1993) used a l""* order accurate finite difference 
technique for the inverse distance method and directly differentiated 
the global basis function to compute vorticity. It was found that di- 
rect differentiation of the global basis function produced generally 
superior results. However, as with the velocity results, the accuracy 
was highly dependent upon the ratio of a characteristic length scale of 
the flow, L, to the mean spacing between measurements, 6. Abra- 
hamson and Lornies (1995) found that calculating vorticity by com- 
puting the local circulation around a point resulted in slightly more 



accurate vorticity results than differentiating a least-squares fit to a 
model velocity field. Luff et al. (1999) compared the T^ and 4* or- 
der accurate finite difference methods and an 8-point circulation 
method in the calculation of vorticity in the presence of both noise 
and missing data points. In terms of only the computed vorticity rms, 
the 2"'^ order accurate finite difference technique produced the best 
results. 

One shortcoming of the above mentioned studies is that only the 
random component of the error field is examined. Fouras and Soria 
(1998) found that the error in the vorticity field could be better repre- 
sented if it is divided into tvs'o portions: a mean bias error due to spa- 
tial filtering, and a random error resulting from the propagation of 
error in the velocity measurements into the vorticity calculation. In 
some cases, the mean bias error can be significantly larger than the 
random error. This study recommends differentiating a T^ order 
polynomial least-squares fit to the velocity data for the calculation of 
vorticity based on the 21 closest points. However, at low data densi- 
ties, this produces larger bias errors than the use of a finite difference 
method. The results based on differentiating the fit were sensitive to 
the number of points used in the fit. This work is based entirely on 
regularly sampled velocity data; issues connected to remapping an 
irregular data set were not considered. 

The aforementioned investigations suggest different optimum 
methods for vorticity computation depending upon the criterion used 
to assess the error. In our work, we directly compare several of the 
different vorticity calculation methods which were determined in the 
previous studies to produce the best results. In addition, the effect of 
the remapping of the velocity field on the estimation of the vorticity 
is also considered. 

2 Comparison Method 

The present study makes use of a simulation of an Oseen vortex 
in order to study the effect of remapping an irregularly sampled ve- 
locity field onto a regular grid and the calculation of the out-of-plane 
vorticity component. This flowfield has also been used in the works 
of Spedding and Rignot (1993), Fouras and Soria (1998), and Luff e? 
al. (1999). The azimuthal velocity, Ue, and out-of-plane vorticity, co 
of this flow field are described by: 

27- 
1(1-e-t^'"---)) 

(1) 
-Cr'/<i„) 

An example of the velocity and vorticity field generated can be seen 
in Figure 1. Note that even though the mean data density is the same 
in both the irregularly sampled velocity field (Figure la) and the 
remapped velocity field (Figure lb), it is visually easier to discern the 
vortical structure in the regular velocity measurement. 

In order to simulate the irregular sampling found in the original 
velocity field measurements, the simulation data are irregularly 
spaced. The irregular spacing is generated by sub-dividing the meas- 
urement field into 5x5 sized regions, where 5 is the mean spacing 
between velocity measurement points. A random number generator 
is thien used to determine a location for the simulated velocity within 
each 5x5 sized region. Equation (1) is then used to establish the 
velocity at this location. In this manner, the mean spacing between 
measurement points remains equal to 5; however the actual location 
of the measurement varies. 

The random error inherent in MTV and PIV measurements is 
simulated by the addition of noise to the velocity field. The method 
used is similar to that in Luff, et al. (1999). A random number gen- 

erator is used to add a random percentage of noise, with a maximum 
value of «% to each component of the cartesian components, i.e. u 
and V, of the velocity field. Using this formulation, the velocity at 
each point in the simulation has a value of: 

(2) 

where tirandom is a random number with a value -n < rirandom < +«■ 
The quantities «„« and v„„ represent the actual cartesian velocities 
determined fi-om Me in equation (1). Although error values ranging 
from 0%< n < 10% were examined in the simulations, only 0% and 
6% values are presented as they are representative of the other noise 
values. 

The velocity data in the present study are remapped onto a 
regular grid by means of a local least-squares fit to a two-dimensional 
2"'', 3"^, or 4* order polynomial. The u and v velocity fields are fit 
separately. Only the velocity measurements located within the fit 
radius, R, from the regular grid point are used in the fitting procedure. 
In this study, this radius is normalized by the mean spacing between 
velocity measurements, 5. For all cases, the number of points used in 
the fit is such that the least-squares fit is over-determined. That is, 
the number of points used in the fitting process exceeds the minimum 
number necessary for a successful fit, as determined by the number of 
coefficients in the polynomial. For the 2°^ 3"*, and 4* order polyno- 
mials, this minimum number of points are 6,10, and 15, respectively. 
Note, therefore, that the minimum value of i? that can be used for the 
2"'' order fit is smaller than that for the 4* order fit. 

After the fits for the two velocity components are generated, 
each of the local fits is evaluated at the coordinate of the regular grid 
point in order to determine the velocity at that location. Clearly 
choosing a value of R that is too large will result in a considerable 
amount of spatial filtering of the data, while a small value of R will 
limit the ability of the fit to reduce the random noise present in the 
original data. Note that the order of the polynomial places a limit on 
the minimum size of i? that can be used, as described earlier. For all 
of the studies conducted, the density of the remapped, uniformly 
spaced grid remains the same as the initial irregularly spaced meas- 
urement grid. 

Four methods are used to estimate the out-of-plane vorticity. 

_dv    du 

8x    dy 
(3) 

The first two methods estimate the two derivatives in the definition of 
vorticity by means of a 2"'' or 4* order accurate central finite differ- 
ence technique (also referred to as 1" and T^ order finite difference, 
respectively, in several other works). The third method performs a 
direct differentiation of the polynomial least-squares fit used in the 
remapping of the velocity field. This method has the advantage that 
it can be used to estimate the vorticity at any point within measure- 
ment region. The final vorticity calculation method computes the 
circulation of the 8 points in the rectangular region extending one 
regular grid point in each direction around the point to be examined. 
The calculated circulation value is then divided by the area in order to 
determine the vorticity. This method has been shown in Raffel et al. 
(1998) to be identical to a filtered version of the T^ order accurate 
central finite difference technique. Figure 2 illustrates the data points 
used for the calculation of the vorticity in these various methods. 

This study examines the effect of varying the normalized mean 
data density, Uh and the normalized fit radius, R/^ on the accuracy of 
the remapped velocity field and the calculated vorticity field. The 
characteristic flow scale, L, used in this study is the vortex core ra- 



dius, Tcon defined as the distance from the peak vorticity to the loca- 
tion where the vorticity has dropped by a factor of e'. Simulations 
are conducted for values of U?> ranging from 2 to 10 and for JJ/5 
ranging from 2 to 6. Note that in order for the fit to be over- 
determined, not all of these values can be used for all polynomial 
orders of the least-squares fit. 

As in the results of Fouras and Soria (1998), the accuracy of 
both the velocity and vorticity calculations methods are assessed in 
terms of the mean bias error caused by spatial filtering and the ran- 
dom error. Both the propagation of the error in the original meas- 
urements to the remapped field and the placement of the randomly 
spaced points onto the regular grid generate the random error. For 
each parameter condition investigated, 250 independent simulations 
are conducted. This number of samples was found to be sufficient 
for the convergence of the mean statistical quantities, such as the 
mean bias error in this simulation, and results in only a small differ- 
ence in the random error as indicated by the rms values. The mean 
bias error will be denoted by the subscript bias and refers to differ- 
ence between the mean value of these 250 velocity (or computed 
vorticity) measurements and the exact value at each point in the flow- 
field determined from equation (1). The random error is quantified by 
the rms of the velocity (or computed vorticity) data in the sample set. 
For example, for the'x-component of velocity, these are defined as: 

«A,„, = w„. 

1      250 

1       250 

250 tr 

(4) 

In these expressions, u,- is the velocity at a particular point of an indi- 
vidual realization in the simulation. All of the velocity and vorticity 
error values reported here are normalized by their respective maxi- 
mum values determined from equation (I). The normalized values 
are shown without the (). 

3 Remapping Results 

Figure 3a displays the mean velocity bias error for the T^, 3"*, 
and 4th order polynomial fits. The results presented in this figure are 
for the case of 0% added noise because the addition of noise has no 
effect on the bias error, as it is a mean quantity. For all three fits, the 
mean velocity data density is kept fixed at i/5 = 3.0. That is, there 
are nominally 7 velocity vectors along the vortex core diameter. For 
the T^ and 3^'' order polynomial fits, three different values of i?/5 are 
examined. However, only the two larger values are used for the 4"" 
order polynomial fit to ensure there are enough data points available 
for the fit. In terms of the mean bias error, reducing this radius re- 
sults in a significant decrease in the bias error. For the 2°"^ and 3'^'' 
order polynomial fits, reducing from R/h = 4 to Wb = 2 results in a 
decrease of the peak mean bias error from 8% to less than 1%. This 
effect is present, although less dramatic, in the results for the 4* order 
polynomial fit. Note that the values specified are the maximum bias 
error. The bias errors at other locations is significantly smaller. 

In terms of the mean bias error, the most accurate results are 
obtained using the least-squares fit to a 4* order polynomial. How- 
ever, the difference in the bias error between the 4* order fit using 
R/d = 3,and the 2°'* order fit with R/8 = 2 is approximately 0.6%. It 
is interesting to note that the results for the 2 and 3"* order polyno- 
mial fits are nearly identical. For all three fit orders, the peak bias 
error occurs at approximately O.drcore- In the region r/rcore > l-^> the 
velocity values tend to be overestimated, rather than underestimated. 

Since the area of the region r/vcore > 1-5 is significantly larger than 
the region where the velocity values are underestimated, the net aver- 
age of the bias error becomes very small. Thus, one should be cau- 
tious about the use of an accuracy measure which is averaged over 
the entire vortical structure as this does not represent the actual error 
seen at any individual measurement location. 

Figures 3 b and 3 c show the random error found in the remapped 
velocity field for cases of 0% and 6% added noise respectively. From 
Figures 3b and 3 c it can be seen that, generally, the value of the rms 
error is less than 2% at all locations. This value can only be reduced 
by a maximum of 1.5% by the optimal choice of fit order and RM, 
whereas a reduction of 8% is seen in the bias error. It is also inter- 
esting to note that for the case of 0% added noise, reducing iJ/5 re- 
sults in a decrease in the random error. However, for the case of 6% 
added noise, reducing R/h results in an increase in the random error. 

Unless otherwise stated, the remainder of the results presented in 
this paper will use the 2"'* order polynomial for the remapping proc- 
ess. This choice is made because of this condition has a very small 
bias error, nearly identical to the other fit orders, and it is not as com- 
putationally intensive as the 3'^'^ and 4* order polynomials. Figure 4 
shows the effect of grid density on the accuracy of the remapping of 
the 2"'' order polynomial fit for J?/5 = 2. As shown in Figure 4a, in- 
creasing the grid density can reduce the bias error in the remapping. 
For L/?> = 2, the bias error is nearly 3% of the maximum velocity. 
Increasing i/5 to 3 results in a bias error of less than 1%. It should 
be noted that these values are only valid for R/b = 2. In order to 
achieve a bias error of less than /% for a larger value of i^B, such as 
R/b = 4, L/5 must be greater than 6. 

Figure 4b and 4c show the effect of increasing the grid density 
on the random error. • For the 0% added error cases, increasing the 
grid density also results in a noticeable decrease in the random error. 
The addition of noise, shown in Figure 4c, generally increases the 
random error. The 6% noise added to the data tends to dominate the 
random error results and leads to the random error profiles being 
nearly identical for the values of 1/5 examined in this study. 

4 Vorticity Calculation Results 

In this section, the error generated by the four methods for cal- 
culating the out-of-plane vorticity field will be examined. First, we 
will discuss the results from directly differentiating the various poly- 
nomial orders used in the remapping procedure in order to determine 
the vorticity value. Then, the results from this method will be com- 
pared with those from the finite difference and circulation methods 
applied to the remapped data using the 2""* order polynomial. 

Figure 5a shows the mean bias error for differentiating the 2"'', 
3^'', and 4"" order polynomials for several values ofR/8. Similar to the 
velocity bias error results, decreasing R/d decreases the bias error. 
The smallest values for the mean bias error are found using the 
smallest values of R/5 and the 3"* and 4"' order polynomials. These 
selections result in a bias error of less than 4%. It is interesting to 
note that although the error in the remapping of the velocity field 
through the use of the 2°'' and 3"* order polynomials are nearly identi- 
cal, the vorticity estimates by differentiating these polynomials differ. 
Further, the vorticity estimates that result from differentiating the 3"* 
and 4* order polynomials (for the same value of R/S) are very simi- 
lar. 

Figures 5b and 5c show the effect of the order of the polynomial 
fit on the random component of the error. For the case in which no 
noise is added to the velocity data, the random error is less than 1.5%. 
The addition of 6% random noise results in a small increase in the 
random error for the majority of cases. For the 3"^ order fit and 
R/8 =2, a. large spike is seen in the error. It is believed that this spike 



is generated because the number of points utilized for the fit is only 
, slightly larger than the minimum number of points required. With 

the exception of that case, there is generally little difference in the 
random error among the various polynomial fits. In the remainder of 
this paper, only the vorticity estimated from differentiating the 4* 
order fit with R/5 =J will be compared with those calculated using 
the finite difference and circulation methods. The results generated 
by direct differentiation of the 3"* order fit were not selected for fur- 
ther comparison because for R/5 = 2, where the bias error is noticea- 
bly less than that of the 4* order differentiation, the random error is 
significantly larger when noise is present in the original data. Fur- 
thermore, the 4 order fit results in significantly better velocity re- 
mapping results compared to the 3'''' order fit. Thus, the 4"" order fit 
seems the more suitable selection for performing the remapping and 
vorticity calculation. 

Figure 6a compares mtias found by the four different methods 
considered here. Once again, the effect of adding noise to the initial 
velocity field on the bias error is negligible, therefore, only the case 
of 0% added noise is shown. The qualitative features of the four 
methods are very similar. The maximum (Dwaj occurs at r/r^ore - 0 
which is the location of the peak vorticity. For r/r^ore > ■'■•^. there is a 
small overshoot where the vorticity value is overestimated. Note that 
although the numerical amount of the overshoot is small relative to 
that of the undershoot, the area occupied by the region of overshoot is 
roughly three times larger than the region of undershoot. Thus, the 
overall area-averaged vorticity bias error is very small. As a result, 
the estimate of the overall circulation of the vortex computed by inte- 
grating the vorticity field from any of these methods is accurate to 
better than 0.1% even though the peak bias error can be as large as 
20%. 

In terms of the mean bias error, it is apparent that differentiating 
the 4"' order polynomial fit, and the use of the 4* order accurate finite 
difference technique produce the most accurate vorticity field infor- 
mation. For comparison purposes, the results from R/b = 4 ure also 
shown. As expected, reducing the value of R tends to improve the 
accuracy of the vorticity calculation as well as decreasing the differ- 
ence between the accuracy of the two techniques. The circulation 
method and the 2"'^ order accurate finite difference method produce 
results with a significantly larger bias error than the other two meth- 
ods. 

Figure 6b and 6c show the random error for the vorticity calcu- ' 
lation methods for the cases of 0% and 6% added noise respectively. 
Generally, differentiating the 4"" order polynomial produces the 
smallest random error while the 4"' order accurate finite difference 
method produces the largest. As with the velocity field, the improve- 
ment which can be realized through the use of the optimal method to 
minimize the random error is much smaller than that which can be 
realized by minimizing the bias error. However, the difference in the 
random error between these two techniques is approximately 1%. 

As expected, increasing the density of the original data also 
dramatically reduces the mean bias error as seen in Figure 7a. This 
figure only shows results for the 4* order accurate finite difference 
technique and R/5 = 2, however, the qualitative features of all of the 
methods are identical. Increasing the mean data density, i/S, from 2 
to 4 results in a decrease of the mean bias error from approximately 
7% to less than J%. Further increases result in only a small decrease 
in the bias error. As in the results presented for the remapping un- 
certainty, increasing the density of the data also results in a decrease 
of the random error for the case where no noise is added to the origi- 
nal data shown in Figure 7b. However, when noise is added to the 
original velocity field, as shown in Figure 7c, the random error in 
vorticity is found to increase with the increase in the grid density. 
For US = JO, the random error is nearly 6% of the peak vorticity 

value, which is only slightly smaller than the peak bias error intro- 
duced in the L/S= 2 case. For moderate values of L/5, such as i/S = 
3, the peak random error is about 2% of (B„ai:- 

It should be noted that applying the uncertainty analysis to the 
finite difference calculation for vorticity shows that the error in the 
vorticity is connected to the error in the velocity in the form arms ~ 
Unns/5. Therefore, as the grid density increases, the vorticity error is 
expected to increase as well; a trend that is not seen in Figure 7b. 
The reason is that the source of the noise itself, i.e. Unm. is not fixed 
and varies depending on the grid density during the remapping proc- 
ess (e.g. see Figure 4b). The combined effect is illustrated in Figure 
7b. However, for the case where noise has been added to the initial 
data (Figure 7c), oOrms shows the expected increase. In this case, a,^ 
(see Figure 4c) remains nearly constant as grid density varies. 

5 Conclusions 

The effect of remapping irregularly spaced velocity measure- 
ments onto a uniformly spaced grid and the accuracy of the out-of- 
plane vorticity computed fi-om this information are studied through 
the use of a Gaussian core vortex simulation. Remapping onto a 
regular grid was performed by using a least-squares fit to 2""*, 3"*, and 
4* order polynomials. Four methods are used for the calculation of 
vorticity from the velocity data. The derivatives necessary for the 
computation of vorticity are found by directly differentiating the 
polynomials determined from the least-squares fit or by performing a 
2°'' or 4* order accurate finite difference calculation on the regularly 
spaced data. The final method computes the local circulation of the 
region around a point and divides this circulation by the area. The 
effect of varying the normalized grid density L/8 (ratio of the flow 
characteristic length to the mean spacing in the initial velocity meas- 
urement) and the normalized maximum radius from which points are 
used in the remapping process, i?/5, are examined. For all of the 
studies conducted, the density of the remapped, uniformly spaced 
grid remains the same as the initial irregularly spaced measurement 
grid. 

As in the study by Fouras and Soria (1998), the error resulting 
fi-om the remapping and the calculation of the out-of-plane vorticity 
is divided into a mean bias error due to spatial filtering and a random 
error due to the remapping process itself and the propagation of the 
error in the original data. Generally, the errors resulting from the bias 
error are significantly larger than random error. The mean bias error 
is not affected by noise in the original measurements and can be de- 
creased by increasing the grid density. The random error is affected 
by the presence of noise in the original measurements, which causes 
an increase in the random error. However, the filtering inherent in 
the least-squares fitting process tends to decrease the magnitude of 
the random error in the remapped data. 

In terms of the mean velocity bias error, it is necessary for the 
grid density to be suitably high and for the fit to be local, i.e., small 
values of R/5, to generate an accurate remapping. In this study, the 
4* order polynomial produced the most accurate remapping; how- 
ever, due to die large number of points needed for the fit to be deter- 
mined, it is not possible to use the same small values of R/5 as can be 
used with the lower order polynomials. The difference in the bias 
error between the 4* order polynomial with R/5 = 3 and the 2"'' order 
polynomial with R/5 = 2 is very small. Thus, it is felt that the use of 
a 2"'' order polynomial for the remapping is appropriate. In order to 
obtain results with a maximum mean velocity bias error of approxi- 
mately 7% or less for the 2"^ order polynomial, the normalized data 
density L/5 should be greater than or equal to 3, and R/5 should be 
less than or equal to 2. The difference in the random component of 
the error between the various fit orders is relatively small compared 



to the changes seen in the bias error. The rms values only varied by 
approximately 2% of the peak value when comparing different meth- 
ods. 

The most accurate results for the vorticity calculation were ob- 
tained by differentiating the 4* order polynomial fit and by use of the 
4"" order accurate finite difference method on data remapped by a 2" 
order polynomial fit. Although the accuracy of these two techniques 
are comparable, it is believed that the 2"^ order polynomial fit com- 
bined with the 4"" order accurate finite difference technique is better 
suited for the calculation of vorticity values fi-om the PIV or MTV 
data since this method is less computationally intensive. 

In the calculation of vorticity, the noise present in the original 
data influences the selection of suitable values for R/b and L/5. In the 
absence of noise in the initial velocity data, L/(S should be made as 
large as possible for lowest vorticity random and bias errors. How- 
ever, if the measured velocity field contains significant sources of 
noise, a large value ofL/B is not desirable as it results in a consider- 
able increase in the random error, offsetting any potential decrease in 

the bias error. A choice of L/5 = 3 and R/5 = 2 yields vorticity val- 
ues with both a mean bias and random error of less than 2% of the 
peak vorticity value for both the noise-free and the noisy initial ve- 
locity field results. It should be noted that the error values quoted are 
the maximum error across the vortex core. The error at most points is 
considerably less than the quoted 2%. 

It should be noted that if the actual values of R/5 and L/B are 
known in an experiment, it is possible to use the results of these 
simulations to extrapolate and estimate the actual vorticity value fi-om 
under-resolved data. 
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Figure 1: Sample normalized velocity and vorticity fields of a Gaussian core vortex, (a) Original velocity vector field on an irregular grid, 
(b) Velocity vector field placed upon a uniformly spaced grid, (c) Flooded contour plot of normalized calculated vorticity field. Contour 
lines are placed at .125, .25,..., 1. 
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Figure 2: Velocity measurement locations used in the estimation of the spatial derivatives, (a) 2"^ order accurate finite difference, (b) 4* 
order accurate finite difference, (c) 8-pt circulation method. 
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Figure 4: Accuracy of remapped velocity field for different original velocity data densities for the 2"^ order polynomial fit. (a) Mean bias 
error, (b) Random error with 0% noise added to initial velocity field, (c) Random error with 6% noise added to initial velocity field. 
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Figure 5: Accuracy of out-of-plane vorticity field computed by differentiating the local polynomial fit for different values of i?/S. (a) Mean 
bias error, (b) Random error with 0% noise added to initial velocity field, (c) Random error with 6% noise added to initial velocity field. 
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Figure 6: Accuracy of out-of-plane vorticity field computed by four different calculation methods for different values of i?/5. (a) Mean bias 
error, (b) Random error with 0% noise added to initial velocity field, (c) Random error with 6% noise added to initial velocity field. 
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Figure 7: Accuracy of out-of-plane vorticity field for different original velocity data densities. Vorticity is calculated using the 4 order 
accurate finite difference method, (a) Mean bias error, (b) Random error with 0% noise added to initial velocity field, (c) Random error 
with 6% noise added to initial velocity field. 


